
Abstract  Among its many impacts, climate warming is leading to increasing winter air temperatures, 
decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes 
and their watershed. Understanding and predicting the consequences of these changes is impeded by a 
shortage of winter-period studies on most aspects of Great Lake limnology. In this review, we summarize 
what is known about the Great Lakes during their 3–6 months of winter and identify key open questions 
about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen 
lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, 
and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent 
of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls 
many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of 
Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter 
measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to 
close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on 
these large and dynamic ecosystems may require investment in new, specialized research infrastructure. 
Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration 
between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas.

Plain Language Summary  The Laurentian Great Lakes are the world's largest freshwater 
ecosystem and provide diverse ecosystem services to millions of people. Affected by multiple interacting 
stressors, this system is the target of extensive restoration and management efforts that demand robust 
scientific knowledge. Winter limnology represents a key knowledge gap that limits understanding and 
prediction of the function of the Great Lakes and other large temperate lakes. Here, we summarize what 
is known about the Great Lakes during their 3–6 months of winter, identify key questions that must be 
addressed to improve understanding of the physical, chemical, and biological functioning of large lakes 
in winter, and suggest ways to address these questions. We show that ice cover is a “master variable” that 
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1.  Introduction and Background
The five Laurentian Great Lakes (Superior, Michigan, Huron, Erie, and Ontario) comprise the largest fresh-
water ecosystem on the planet and provide valuable ecosystem services to millions of people in Canada and 
the US. A defining feature of the Great Lakes region is a long and sometimes harsh winter that can last for 
more than 1/3 of the year (see Box 1 for several Great Lakes-specific definitions of winter). Winter in the 
Great Lakes region is, however, rapidly changing. Over the past four decades, the Great Lakes suffered a 
significant decrease in the extent and duration of ice cover (Wang et al., 2018), and projections suggest that 
ice cover may become a rare occurrence by the end of the 21st century (Filazzola et al., 2020). In addition 
to changes to ice patterns, climate change has impacted the amounts, timing, and form of winter precipita-
tion, soil freeze and thaw cycles, and the timing of the spring freshet (Baijnath-Rodino et al., 2018; Byun & 
Hamlet, 2018; Contosta et al., 2019).

Predicting the consequences of ice loss and other winter-period changes for the Great Lakes is difficult be-
cause of a large knowledge gap about their winter limnology. Few in situ Great Lakes studies have examined 
processes that occur during winter or the connections between winter and other seasons. Two reasons help 
explain the scarcity of winter research on the Great Lakes. The first is the logistical difficulty and danger 
of winter field work on the Great Lakes (Block et al., 2019; Bolsenga et al., 1988). Between November and 
March, gale force winds and unstable ice keep most of the relatively small Great Lakes research vessels 
(none of which have ice breaking capabilities) in port, and instrumented surface buoys on shore. In ad-
dition, the size of the Great Lakes and their unpredictable ice cover makes over-ice travel difficult beyond 
nearshore areas, further restricting access to the lakes. The second reason for the lack of Great Lakes winter 
research is the historical belief among many limnologists that little of importance happens in lakes during 
winter, which is thought to be mainly a time of dormancy and senescence (Hampton et al., 2015, 2017; 
Salonen et al., 2009).

Studies on the Great Lakes and other freshwater systems have begun to challenge the assumption that the 
winter ice cover period is characterized by negligible biological activity and that winter conditions have 
no bearing on subsequent seasons (e.g., Beall et al.,  2016; Hampton et al.,  2017; Katz et al.,  2015; Pow-
ers et  al.,  2017; Reavie et  al.,  2016; Straškrábová et  al.,  2005; Twiss et  al.,  2012; Vanderploeg, Bolsenga, 
et al., 1992; Vanderploeg et al., 2010; Yang et al., 2020). The findings of these studies provide a strong im-
petus to improve understanding of the functioning of the Great Lakes during their 3–6-month period of 
winter. The rapid pace of change in winter conditions additionally motivates increased attention to winter 
limnology in the Great Lakes and other large temperate lakes. After all, how can we predict and manage the 
future of an ecosystem if we do not understand how it functions for significant portions of the year?

OZERSKY ET AL.

10.1029/2021JG006247

2 of 25

controls numerous aspects of large temperate lake ecology and that the effects of the ongoing reduction in 
ice cover extent and duration cannot be predicted without improved knowledge of winter limnology.
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Box 1. What is “winter” on the Great Lakes?

Researchers working on small north temperate lakes often define “winter” as the period when lakes are ice-covered. Defin-
ing winter for the Great Lakes is more difficult. The five Great Lakes experience different ice cover extent, from 80% to 100% 
on Lake Erie to <50% on Lake Ontario (Figure 1). The Great Lakes also experience dramatic interannual fluctuations in ice 
cover extent. For example, the maximum areal ice cover on Lake Superior was 96% in the winter of 2014; in 2012 it was only 
8% (Figure 2). This variability makes it difficult to identify a single definition of winter for the Great Lakes. We offer a few 
potential definitions of “winter” for the Great Lakes:
Calendar winter: in the Northern Hemisphere, the period between the winter solstice and spring equinox, or December 21 
to March 20.
Meteorological winter: the period when long-term average daily air temperatures are below freezing. This period varies 
widely in different parts of the Great Lakes, from 79 days in Toledo, OH to 139 in Duluth, MN (1981–2010 data).



Journal of Geophysical Research: Biogeosciences

The winter “blind spot” has recently been recognized as one of the most important knowledge gaps in 
understanding the functioning of seasonally frozen lakes, spurring increasing interest in winter limnology 
(Hampton et al., 2015; Powers & Hampton, 2016; Salonen et al., 2009; Sommer et al., 2012). However, much 
of this new work has focused on relatively small lakes. The large size, spatial heterogeneity in environmen-
tal conditions, intermittent ice cover, and sensitivity to winter conditions make the winter dynamics of the 
Great Lakes distinct in many ways from more intensively studied small lakes. We believe that studies from 
the Great Lakes and other large lakes are necessary to expand and bridge our knowledge of the winter be-
havior of lakes of diverse sizes and climatic settings as well as coastal marine environments.

In this review, we summarize the current state of knowledge on Great 
Lakes winter limnology, identify the most important knowledge gaps 
and associated questions, and suggest pathways to addressing these in-
formation gaps. This discussion is organized along three disciplinary 
topics: physics, biogeochemistry, and biology. We hope this contribu-
tion will stimulate more interest in large lake winter research in the 
limnological community and recognition of the urgent need for this 
work among members of the public, resource managers, and funding 
agencies. While we focus on the Laurentian Great Lakes, the lessons 
and questions we highlight here are of broad relevance to other northern 
large lakes (e.g., Baikal, Onega, Ladoga, Winnipeg, Peipus, Vänern, Con-
stance, and many others), as well as to smaller lakes and coastal marine 
ecosystems such as the Baltic Sea, the Gulf of St. Lawrence, and Hudson 
Bay, among others.

2.  Physics, Ice, and Water Movement
Physical processes set the stage for, and control, many aspects of the 
biogeochemistry and biology of large lakes (Tilzer,  1990). Vertical and 
horizontal mixing, the presence and properties of ice, and water tempera-
ture affect the distribution of matter and organisms, the underwater light 
environment, and temperature-dependent biological rates. Physical pro-
cesses also have important socioeconomic implications, since water and 
ice motion can damage coastal infrastructure, impact shipping activity, 
transport pollutants, and affect regional weather patterns (Gronewold 
et al., 2013; Millerd, 2011; Wright et al., 2013). Thus, the study of full-
year physical dynamics in lakes is crucial for understanding their annual 
biogeochemical and biological cycles and for predicting how ecosystem 
structure, functioning, and services will change in the future.
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Ice cover period winter: the typical period when appreciable ice cover is present. This period typically extends from mid-De-
cember to early-May on the Great Lakes but varies widely among lakes and years.
Stratification winter: the period of inverse stratification which occurs when surface temperatures are below 4°C, the max-
imum density of freshwater. This period can last as long as 5–6 months on Lake Superior, but may not occur at all in Lakes 
Michigan and Ontario, which mix continuously through the winter during all but the coldest winters.
Logistical winter: the period when the lakes become difficult to access due to dangerous weather conditions, insurance 
rules or the presence of ice cover that presents a “hard stop” to most Great Lakes research vessels.
Ignorance winter: the cold-weather period for which the least limnological information is available. This period generally 
extends from November to April for all five Great Lakes and their connecting waters.

Of course, none of these definitions are fully comprehensive and all overlap in some respects. The choice of the definition 
should depend on the context and questions of interest, and this is how we use “winter” in this study.

Figure 1.  Maximum ice cover extent on the Great Lakes during a low ice 
year (2020, February 22; (a) and high ice year (2014, March 6; (b). Image 
credit: NOAA CoastWatch/OceanWatch.
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Knowledge of winter physical limnology in the Great Lakes is remarkably limited. This stands in contrast 
to the growing body of literature on the winter physical limnology of smaller lakes (e.g., Bengtsson, 2011; 
Bouffard & Wüest, 2019; Kirillin et al., 2012; Leppäranta, 2015; Yang et al., 2020). The Great Lakes, however, 
are not simply scaled-up versions of small lakes. By virtue of their size, the physical processes that are im-
portant in the Great Lakes are not necessarily those that dominate in smaller lakes. For instance, rotation-
ally controlled processes such as Ekman transport and near-inertial oscillations play a more important role 
in the winter circulation of larger lakes (Austin, 2013; Bootsma, 2018; Choi et al., 2012). The large fetch of 
the Great Lakes causes large surface waves and vigorous surface mixing in the fall and winter, which results 
in a different pathway to ice formation than in smaller lakes and to reduced snow accumulation over the ice 
(Bolsenga & Vanderploeg, 1992). The large heat capacity of the deep Great Lakes results in water temper-
atures much higher than air in the fall and winter. The resulting convection in the atmospheric boundary 
layer enhances surface winds over water, evaporation and lake effect snow, and transfer of momentum to 
the water in the form of waves and currents (Croley, 1989). The size of the Great Lakes also results in larger 
spatial variation and complexity in meteorological forcing and resulting physical conditions than in smaller 
lakes. Below we review the state of knowledge on winter physical processes in the Great Lakes and identify 
key research questions that relate to ice and water-column physics.

2.1.  Ice Cover Processes and Properties

Ice cover moderates the transfer of heat, light, wind energy, and gases between water and the atmosphere 
and is, therefore, a key variable in aquatic ecosystems (Post et al., 2013; Sharma et al., 2019). The region-
al climate, importance of teleconnections, and size of the Great Lakes results in large interannual and 
among-lake variations in ice cover duration and extent. A key finding from remote sensing studies (As-
sel, 2003, 2005; Bolsenga, 1992 ) is that the extent and duration of Great Lakes ice have been decreasing 
since the 1970s (Figure 2), with a possible regime shift to a lower-ice state in Lake Superior the late 1990s 
(Austin & Colman, 2007; Wang et al., 2012; Van Cleave et al., 2014).

Studies of relationships between ice cover extent and environmental conditions have shown that Great 
Lakes ice cover extent is sensitive to even small variations in air temperature and is affected by large-scale 
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Figure 2.  Annual maximum ice cover (AMIC) extent for individual Great Lakes and across all five lakes (“All”) for the 
period between 1973 and 2020, with simple linear regression lines and tau and p-values for one-tailed Mann-Kendall 
trend tests. AMIC is defined as the maximum value of the daily ice extent over the entire ice season.
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climate teleconnections such as the North Atlantic and El Niño–Southern Oscillations, Pacific Decadal 
Oscillation, and Atlantic Multi-decadal Oscillation (Bai et al., 2012; Wang et al., 2018). These observations 
have been used to inform and ground-truth coupled ice-hydrodynamics models (e.g., Anderson et al., 2018; 
Croley & Assel, 1994; Fujisaki-Manome et al., 2020; Fujisaki et al., 2013), and to explore interactions be-
tween climatic forcing, ice cover and vertical and horizontal water circulation.

Despite progress in modeling ice cover extent, important questions about mechanisms of ice formation 
and ice dynamics remain. The formation of ice on large lakes is distinct from ice formation on smaller 
lakes and is not well understood (Fujisaki et al., 2012). On smaller lakes, ice formation typically occurs 
soon after most of the water mass reaches 4°C (the temperature of maximum density) and a thin layer 
of colder (near 0°C), lighter water forms above the dense 4°C water. In contrast, due to the large size and 
energetic fall/winter meteorological forcing of the Great Lakes, mixing can prevent the formation of ice 
cover until a much deeper upper layer of the water column is close to 0°C (Fujisaki et al., 2012; D. J. Titze 
& Austin, 2014). In addition, ice is not laterally monolithic on the Great Lakes. Ice formation is spatially 
and temporally variable (Figure 2) and likely a function of not just wind forcing but precipitation patterns 
and the thermal structure of the water column below (Fujisaki-Manome et al., 2020), factors that have been 
examined mostly through modeling rather than empirical approaches. Important questions also remain 
about ice—surface wave interactions. As in Arctic seas, surface waves in the Great Lakes play important 
roles in ice dynamics (Bai et al., 2020; Ruest et al., 2016), and questions about how surface waves affect ice 
formation, how ice cover attenuates wave energy and how waves break ice cover into smaller pieces, leading 
to increased melting, remain open.

Patterns of ice drift are also poorly characterized in the Great Lakes with few direct observations. Campbell 
et al. (1987) used four satellite-tracked on-ice buoys on Lake Erie during the winter of 1984 to measure drift 
speeds. More recently, Titze & Austin (2016) used an upward looking Acoustic Doppler Current Profiler 
(ADCP) to generate a time series of ice drift from Lake Superior during the cold winter of 2013–2014 and 
showed a strong relationship between the wind velocity and the ice drift velocity, as well as periodic locking 
up of the ice sheet (i.e., absence of ice movement in the presence of strong winds). Knowledge gaps con-
cerning ice cover formation and its interactions with wave motion must be addressed to enable forecasting 
the long-term future of Great Lakes ice cover and its response to changing climate conditions.

Another important knowledge gap concerns the physical properties of Great Lakes ice, including its thick-
ness and clarity. Measurements of ice thickness are important for modeling lake heat budgets, understand-
ing ice-wave interactions, engineering shoreline infrastructure, and the Great Lakes shipping industry. The 
few papers that address Great Lakes ice thickness tend to focus on nearshore areas (e.g., Assel, 1976; Bolsen-
ga et al., 1988; Gilbert, 1991; Sleator, 1995) rather than the open lake. Two recent studies of open lake ice 
thickness in Lake Erie (Hawley et al., 2018) and Lake Superior (Titze & Austin, 2016) have shown that ice 
thickness is highly heterogeneous in space, and that ice movement and ridging can result in the formation 
of ice keels over 10 m deep. Additional studies are needed to produce better estimates of offshore ice thick-
ness and determine how Great Lakes ice thickness responds to climate variation.

Like ice thickness, the optical properties of Great Lakes ice have received minimal attention. Together with 
solar-driven convective mixing, the attenuation of light by ice and snow controls the availability of light 
to primary producers and hence their ability to support winter food webs (Katz et al., 2015; Kelley, 1997). 
In smaller lakes, snow accumulation over the ice often results in low transmittance of light to the water 
column below (Leppäranta, 2015; Pernica et al., 2017; Yang et al., 2020). Due to their large fetch, snow 
accumulation on Great Lakes ice is usually less than on smaller lakes, and snow tends to get blown into 
windrows, creating patches of clear and snow-covered ice. Bolsenga and Vanderploeg (1992) and Vander-
ploeg, Bolsenga, et al. (1992) presented some of the only published estimates of light transmission through 
Great Lakes ice and showed that almost half of the light reaching the ice surface can be transmitted to the 
water below. The optical properties of Great Lakes ice and their spatial and temporal variation must be 
much better characterized to understand how ice cover and its characteristics affect light availability and 
light-dependent processes, such as primary production and photochemical reactions.
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We identify four broad questions regarding Great Lakes ice which must 
be addressed to enable a predictive understanding of ecosystem dynam-
ics, local and regional weather patterns, as well as transportation and in-
frastructure safety:

Q1.1: How do atmospheric and climatic conditions influence Great Lakes 
ice cover on interannual and decadal time scales?

Q1.2: How does ice cover attenuate surface waves and in return how do 
waves mechanically break ice cover, leading to thermal melting?

Q1.3: How thick is Great Lakes ice, what factors govern ice thickness, 
and what role do ice ridges and keels play in water column mixing and 
disturbance of benthic habitats?

Q1.4: How much light is transmitted through Great Lakes ice and snow 
cover and what factors control the optical properties of Great Lakes ice?

2.2.  Thermal Structure and Circulation

Vertical and horizontal mixing of water masses critically affects the func-
tion of aquatic ecosystems, controlling the distribution of nutrients, ox-
ygen, and organisms. In freshwaters, vertical and horizontal mixing is 
strongly affected by thermally driven density gradients and wind forcing. 
Thus, seasonal changes in air temperature and wind patterns lead to large 
variations in water movements and density stratification. In the Great 
Lakes, thermal structure and circulation of the water column are often 
considered together and are addressed in two principal ways: in situ ob-
servations and numerical modeling. Numerical models which are config-

ured to run over an interannual time span simulate water column winter thermal structure and circulation 
and are relatively common in the Great Lakes literature (e.g., Anderson et al., 2018; Bai et al., 2020; Beletsky 
& Schwab, 2001; Beletsky et al., 2012;Fujisaki-Manome et al., 2020). In situ observations of wintertime hori-
zontal and vertical water movement on the Great Lakes are much more limited, resulting in difficulties in 
model calibration and validation.

Year-round, depth-resolved temperature observations are available only for Lake Michigan and Lake Su-
perior. An NOAA buoy in south-central Lake Michigan provides a continuous temperature record from 
1990 (Anderson et al., 2021; GLERL, 2019), making it the longest time series of full-year thermal structure 
in the Great Lakes. Moorings in Lake Superior (Austin, 2013; Titze & Austin 2014) provide information 
on thermal structure and circulation at several locations starting in 2005. The other Great Lakes have no 
continuous long-term observations of wintertime thermal structure, making it a high-priority information 
gap. Results from observations in Lake Michigan and Lake Superior show that winter-period stratification 
patterns are highly sensitive to winter air temperatures and ice cover conditions (Anderson et al., 2021). 
In Lake Superior, cold, high-ice winters are associated with strong inverse stratification that lasts well into 
spring; stratification is much weaker in warm winters, resulting in deeper mixing of the water column and 
earlier warming in spring (Figure 3). The ongoing increase in winter air temperatures and decrease in ice 
cover extent may be leading a large-scale restructuring of the mixing regime of the Great Lakes, with a 
transition from a dimictic mixing pattern (with inverse stratification in winter and mixing during spring 
and fall) to a warm monomictic pattern (with continuous deep mixing from fall to spring). The scarcity of 
wintertime temperature observations makes it difficult to determine whether such a shift is occurring or to 
forecast when a shift might occur. Because mixing depth and stratification critically affect the light climate 
for planktonic primary producers (Kelley, 1997; Rowe et al., 2017), improved characterization of winter-pe-
riod vertical mixing (along with measurements of light levels in ice-covered and ice-free regions) is vital for 
modeling winter-period productivity and its response to changes in winter climate.
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Figure 3.  Winter thermal structure in eastern Lake Superior in a warm 
winter (2009–2010, 27.3% maximum areal ice cover; (a) and cold winter 
(2013–2014, 95.8% maximum areal ice cover ice cover; (b) Black contour 
represents 4°C (temperature of maximum density).
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Winter period horizontal water movement is also poorly studied. Understanding of winter currents is based 
on a handful of observational studies (e.g., Austin, 2013; Beletsky et al., 1999; Beletsky & Schwab, 2001; 
Bennington et al., 2010; Pickett, 1980; Saylor & Miller, 1983). Many of these studies represent “snapshots” 
of winter circulation rather than “mean” circulation patterns and have a low spatial resolution (Beletsky 
et al., 1999; Bennington et al., 2010). Despite their limitations, results of these studies reveal that, due to 
stronger winter winds, year-round horizontal circulation is dominated by winter-period processes (Belet-
sky et al., 1999; Rao & Schwab, 2007). Because vertical stratification is weaker or nonexistent in winter, 
wind-driven horizontal currents penetrate deeper into the water column than in summer, moving larger 
quantities of water. Horizontal winter currents have been shown to redistribute large quantities of sedi-
ment, nutrients, and pollutants between nearshore and offshore areas (Eadie et al., 1996). Given the im-
portance of winter currents in moving solutes and particles, additional observations are sorely needed to 
better characterize current patterns and how climatic and meteorological factors, including ice presence, 
influence winter lake currents (Fujisaki et al., 2012).

Thermal structure and water movement affect the heat balance of the Great Lakes, the light environment, 
and the distribution of solutes, particles, and organisms. We identify four priority questions about winter 
water movement and vertical mixing in the Great Lakes:

Q1.5: What are the processes that determine the development of thermal structure and stratification 
through the full annual cycle?

Q1.6: What are the long-term trends for thermal structure in the five lakes and what governs interannual 
variability in stratification patterns? Will the Great Lakes transition to a different mixing regime (e.g., dimic-
tic to monomictic) as the climate continues to warm?

Q1.7: How does vertical mixing interact with ice conditions to affect the underwater light environment and 
distribution of material and organisms?

Q1.8: What are the main horizontal circulation patterns during winter, and how do winter climate and 
weather affect the horizontal movement of water and material in the Great Lakes?

3.  Winter Biogeochemistry
The concentrations and cycling of carbon (C), nitrogen (N), phosphorus (P), and silica (Si), along with 
some ions and metals (e.g., iron [Fe], manganese [Mn], mercury [Hg]), have important implications for 
lake ecosystem function. Nutrient availability determines rates of pelagic and benthic primary productivity 
and supports lake food webs, including fisheries. On the other hand, excess nutrients can cause harmful 
algal blooms, degradation of water quality, and increased sediment oxygen demand (Katsev, 2017; Miller 
et al., 2017; Orihel et al., 2017; Small et al., 2014). Biogeochemical processes also affect the role of freshwa-
ter ecosystems in the global C cycle, including C burial and emissions of greenhouse gases such as carbon 
dioxide and methane (Cole et al., 2007; Fernandez et al., 2020; Townsend-Small et al., 2016).

To better predict the consequences of environmental change on the Great Lakes, a thorough understanding 
of the sources, distribution, and transformations of biologically important elements is needed. In smaller 
temperate lakes, the physical conditions of winter–low temperatures, ice cover, inverse stratification, and 
reduced solar radiation–have been shown to affect rates of chemical reactions and biological activity, result-
ing in large differences between winter-time biogeochemical processes and the rest of the year (Cavaliere & 
Baulch, 2018; Greenbank, 1945; MacIntyre et al., 2018; Powers et al., 2017). The Great Lakes have distinct 
(and more temporally and spatially variable) winter conditions compared to better studied small temper-
ate lakes, which can lead to important differences in their winter biogeochemistry. Unfortunately, too few 
studies have been conducted in the Great Lakes to form a synoptic view of their winter biogeochemistry or 
enable comparisons of their behavior to that of smaller lakes. Below we review the existing information on 
winter biogeochemistry in the Great Lakes and identify key open questions relating to concentrations and 
transformations of elements and temporal and spatial linkages of biogeochemical cycles in the Great Lakes 
ecosystem.

OZERSKY ET AL.

10.1029/2021JG006247

7 of 25



Journal of Geophysical Research: Biogeosciences

3.1.  Concentrations and Transformations

As with other Great Lakes winter data, most available information on C, 
nutrients, and other elements in the winter are from lakes Erie and Mich-
igan, with some additional data from drinking water treatment facilities 
along the Canadian shorelines of lakes Erie, Ontario, Huron, and Superi-
or (Winter et al., 2015). Ontario's Lake Water Quality at Drinking Water 
Intakes program provides a long-term (starting in 1964 at some locations) 
and temporally resolved (bi-weekly sampling throughout the year) record 
of nutrients and phytoplankton (Ontario Open Data Team, 2020). How-
ever, these data are representative of only nearshore conditions, leaving 
a large knowledge gap about biogeochemical dynamics offshore. From 
the limited existing data, we can infer that concentrations of nutrients 
are dynamic during winter and are affected by various biotic and abiotic 
processes.

In Lake Erie, internal and external loading, and uptake by phytoplankton 
leads to winter-period spatial and temporal variation in phosphorus con-
centrations (Burns et al., 1978). Prater et al., (2017) found that particulate 
C:P ratios in the lake were lower in fall and winter than in spring and 
summer, possibly due to increased assimilation of P relative to C into 
phytoplankton biomass under low light winter conditions. Dissolved Si 
concentrations in Lake Erie also decrease during winter due to rapid up-
take by growing diatoms, and Si concentrations are typically at their an-
nual minimum in late winter and early spring (Beall et al., 2016; Burns 
et al., 1978; Hartig & Wallen, 1984; Twiss et al., 2012; Figure 4). Ice cover 
extent has been shown to play an important role in the winter biogeo-
chemistry of Si in Lake Erie. Higher ice cover promotes the growth of 
large diatoms, while ice-free conditions favor the production of smaller 
phytoplankton (Beall et  al.,  2016), which are not associated with large 
winter-time nutrient drawdowns.

Ice cover extent affects concentrations of important elements in other ways. Winter storms cause large 
nearshore resuspension events in lakes Michigan, Huron, and Superior (Biddanda & Cotner, 2002; Cotner 
et al., 2000; Eadie et al., 1990; Eadie et al., 2008). Ice cover has been shown to reduce resuspension, with a 
strong inverse relationship between ice cover extent and resuspension (Eadie et al., 2008; Nicholls, 1998; 
Scavia et al., 2019). While sediment resuspension is limited to nearshore areas in the deeper Great Lakes, 
strong winds can resuspend sediment throughout the shallow central and western basins of Lake Erie (Val-
ipour et al., 2017), potentially resulting in lake-scale effects of ice cover reductions. Winter sediment plumes 
contain elevated concentrations of particulate and dissolved P, N, and C compared to nonplume water (Cot-
ner et al., 2000; Vanderploeg et al., 2007). The increased nutrients and turbidity associated with these resus-
pension events impact water column primary and microbial production, biomass, and taxonomic compo-
sition (Millie et al., 2002, 2003). Winter resuspension events also deliver sediment to the profundal regions 
of the Great Lakes, with much higher sediment fluxes in winter than during the summer stratified season 
(Eadie et al., 1990; Eadie et al., 2008). The significance of winter storm resuspension events for biogeo-
chemical cycling, productivity, and movement of material in the Great Lakes is still unclear (Vanderploeg 
et al., 2007), making it difficult to predict the consequences of reduced ice cover and the resultant increased 
frequency of winter resuspension events.

To our knowledge, there are no studies that document winter water column elemental uptake, transforma-
tion, and processing rates in the Great Lakes. The exception is measurements of primary and bacterial pro-
duction (Beall et al., 2016; Cotner et al., 2000; Depew et al., 2006; Fahnenstiel & Carrick, 1992; Glooschenko 
et al., 1974; Wilhelm et al., 2014). Average rates of biological activity are generally lower in winter than in 
summer for most lakes (Hampton et al., 2017); nonetheless, significant productivity and associated nutrient 
turnover can occur in the Great Lakes in winter, which has important implications for the food web (see 
biology section below). Unfortunately, the paucity of observations makes it difficult to constrain the rates of 
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Figure 4.  Seasonality of dissolved silicates in samples collected from the 
Union Water Treatment Plant on Lake Erie versus day of the year (DOY) 
for the period 1976–2013. The typical ice cover period is shown as a light 
gray polygon. The solid black line shows a generalized additive mixed 
effects model fit, with DOY as a fixed factor and year as a random factor; 
dashed lines represent the 95% CI (F8.45 = 83.2, R2

adj = 0.24, p < 0.0001). 
These data are part of the Ontario Lake Water Quality at Drinking Water 
Intakes program, which reports biweekly water quality data from 18 
drinking water intake treatment plants along the Ontario shore of lakes 
Superior, Huron, Erie, and Ontario (Ontario Open Data Team, 2020). These 
data are the most comprehensive record of winter-period water quality in 
the Great Lakes but are representative only of nearshore conditions.
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these transformations and model how they will change in response to changing winter conditions including 
water temperatures, vertical and horizontal mixing, and ice cover.

Winter nutrient cycling in sediments has received even less attention than water column processes. Sedi-
ments in the Great Lakes are an important biogeochemical reactor and, depending on water column con-
ditions, can serve as either long-term sinks or sources for C, N, and P (Katsev & Crowe,  2015; Matisoff 
et al., 2016). In a rare study of Great Lakes winter sediment biogeochemistry, Doan et al., (2018) examined 
the seasonality of sediment dissolved P efflux rates in Lake Ontario's eutrophic Bay of Quinte. P efflux was 
about 50% lower during winter than summer but still contributed significantly to total annual internal P 
loading. Open-water season studies of Lake Superior sediments revealed significant seasonal variation in 
sediment processes, with some of the lowest sediment oxygen penetration and highest rates of N and P ef-
flux into the water occurring in early spring (Li et al., 2012, 2018; Li & Katsev, 2014). These results suggest 
that sediment biogeochemistry is seasonally dynamic and that winter-period sediment processes may make 
important contributions to annual elemental dynamics, as has been demonstrated in smaller lake systems 
(Orihel et al., 2017).

Water column and sediment geochemical processes do not occur in isolation and are coupled through 
time. One hypothesized example of seasonal carry-over between winter and summer water column and 
sediment processes concerns seasonal hypoxia in Lake Erie. Winter blooms of diatoms in high ice years 
have high sedimentation rates, resulting in efficient export of organic matter to the sediments (Wilhelm 
et al., 2014). This organic matter may play an important role in the summer geochemistry of Lake Erie by 
driving hypolimnetic microbial respiration, hypolimnetic hypoxia, internal P loading, and redox-sensitive N 
transformations (Reavie et al., 2016; Wilhelm et al., 2014). Seasonally resolved measurements of sediment 
characteristics and carbon and nutrient flux between the water column and sediment are necessary to begin 
integrating these processes into full-year models and to determine how changing winter conditions will 
affect the geochemistry of the Great Lakes.

We propose four key questions that need to be addressed to advance understanding of biogeochemical cy-
cles and their effects on biological productivity and water quality in the Great Lakes.

Q2.1: How do concentrations and forms of biologically important elements (e.g., C, N, P, Si, Fe, and Hg) vary 
in the pelagic and littoral zones of the Great Lakes through the full annual cycle?

Q2.2: How do transformation rates (e.g., uptake and remineralization by biota) and the relative importance 
of different processes (autotrophic vs. heterotrophic) vary seasonally in the water column and the sedi-
ments? And how do these processes respond to changes in winter conditions?

Q2.3: How do nutrients and other material moves between nearshore and offshore regions of the Great 
Lakes and how are these processes affected by winter climate over the Great Lakes and their watershed?

Q2.4: How are biogeochemical cycles of P and other biologically important elements coupled through time 
and what are their legacy effects? How will changing winter conditions affect these temporal connections?

3.2.  Lake–Watershed Connections

Human activities in Great Lakes watersheds have large impacts on the health and function of the lakes 
(Chapra & Dolan, 2012; Prater et al., 2017; Williams et al., 2016). Upstream activities such as urbanization 
and the associated stormwater runoff, and increased water and fertilizer use for agriculture affect water 
quality and elemental cycling both in tributaries and the Great Lakes themselves (Larson et al., 2014; Wil-
liams et al., 2016). Historically, the major period of water and material export from catchments to the Great 
Lakes has been associated with the spring snowmelt period, which is characterized by high flows of water 
and often large fluxes of nutrients and other material to the lakes (Long et al., 2014). These spring nutrient 
inputs have been linked to severe late summer algal blooms in western Lake Erie (Stow et al., 2015). Except 
for a few tributaries (e.g., Maumee River, Stow et al., 2015), data on winter-time nutrient export to the Great 
Lakes is sparse, in part because of logistical challenges, assumptions about low biological activity in receiv-
ing waters, and a historical preoccupation with point source inputs such as wastewater treatment plants. 
Ongoing changes in climate (e.g., rain-on-snow events) and land use may alter the timing, quantity, and 
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composition of tributary inputs, making it crucial to incorporate the win-
ter period into studies of land-lake connections in the Great Lakes region.

The Great Lakes region is projected to experience an increase of up to 
30% in precipitation and annual average air temperature is projected to 
increase by 3.3°C–6.5°C (under RCP 4.5 and RCP 8.5, respectively) by the 
end of the 21st century (Byun & Hamlet, 2018). Several models predict 
that precipitation will increase most significantly in winter, with a greater 
proportion falling as rain rather than snow, leading to a decline in snow-
pack depth and earlier spring melts (Byun & Hamlet,  2018; Contosta 
et al., 2019). A recent assessment of winter (defined as January–March) 
streamflow in the Great Lakes basin suggests that such changes are al-
ready occurring, with significant increases in discharge volume over time 
(Norton et  al.,  2019, Figure  5), consistent with predictions of regional 
climate warming. In the future, the proportion of the total annual water 
inputs entering the Great Lakes in winter is projected to increase (Byun & 
Hamlet, 2018), likely with significant effects on material export from the 
watershed. Increased monitoring of winter stream flow (currently taking 
place in only a minority of Great Lakes watersheds; Figure 5) is needed 
to provide a better description of winter discharge trends and the conse-
quences of these changes.

The southern half of the Great Lakes watershed supports most of the 
human population in the region, and in turn, is a more intensively man-
aged landscape. Since nutrient exports are dominated by transport pro-
cesses (Basu et al., 2010), changes in the timing, form, and intensity of 
precipitation events have strong potential to impact nutrient delivery into 

the Great Lakes from tributaries. In agricultural landscapes, rain-on-snow and snowmelt events have been 
identified as major contributors to the mass export of P (Macrae et al., 2007; Miles et al., 2013), N (Crossman 
et al., 2016), and dissolved organic C (Ruark et al., 2009). In urbanized watersheds, rain-on-snow events can 
enhance the export of P from disturbed soils (i.e., construction piles; Duval, 2018) as well as P and N derived 
from decomposing plant biomass and engineered infrastructure (Bratt et al., 2017; Fork et al., 2018).

Additional changes during the winter season that could affect material export may also include increased 
freeze-thaw cycles, decreased frost duration and frost depth, and the loss of winter snow cover (Contosta 
et al., 2019). Freeze-thaw cycles can lyse microorganisms and destroy fine root cells (Tierney et al., 2001), 
releasing their internal C and N and increasing the C and N content of the soil solution (Risk et al., 2013). 
Freeze-thaw cycles can also alter the structure of soil and/or streambank sediments, which can enhance 
nutrient availability (Risk et al., 2013) or increase susceptibility to erosion (Good et al., 2019). Additional 
changes may occur through the loss of snowpack and subsequent re-exposure to freezing temperatures, 
which has been shown to lead to increased leaching loss of N (Fitzhugh et al., 2001; Mitchell et al., 1996) 
and the development of impenetrable concrete frosts, which inhibit penetration of meltwaters into the soil 
(Shanley et al., 2002). Shifting dominance of flow paths could alter the particulate/dissolved ratios of ex-
ported nutrients (Liu et al., 2013). Enhanced “greening” (i.e., increased NPP) in terrestrial ecosystems under 
a warming climate may also affect the total pool of nutrients available for export or the ratios of exported 
N:P, Si, and/or organic N, particularly in regions that receive sufficient precipitation (Hessen et al., 2009).

We propose two questions that will help improve understanding of the connections between the Great 
Lakes and their watershed and predict how climate and land use change will affect inputs of nutrients and 
other material into the Great Lakes:

Q2.5: What proportion of material (water, nutrients, sediment, C) currently enters the Great Lakes during 
the winter period, and how do winter inputs vary with land use and precipitation amount, timing, and 
form?

Q2.6: How will the quantity, timing, and form of winter material delivery respond to changes in land use, 
management, and climate?
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Figure 5.  Trends in January-March water discharge in Great Lakes 
watersheds between 1960 and 2015 for stations with adequate data. 
Watersheds are color coded based on the predominant temporal trends 
as assessed by a modified Mann-Kendall test to account for short term 
persistence (see Norton et al., 2019 for data and methods). Note. Watershed 
level trends displayed here are aggregate measures for all gauges within 
the watershed.
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4.  Winter Biology
The winter biology of lakes is still relatively poorly understood (Hamp-
ton et al., 2015, 2017), especially compared to marine systems (e.g., Ar-
rigo et al., 2008; Grebmeier, 2012; Kaartokallio, 2004; Meier et al., 2014). 
While some studies find little biological activity under lake ice (Lep-
päranta, 2015; Sommer et al., 1986), others show diverse and productive 
winter communities, with few consistencies among systems (Bondarenko 
et al., 2006; Hampton et al., 2015, 2017; Salonen et al., 2009; Vanderploeg, 
Bolsenga, et al., 1992). Due to the logistical challenges of winter work and 
their size, the winter biology of the Great Lakes remains even less under-
stood than that of smaller lakes. The relatively few existing studies show 
that biological processes in the Great Lakes remain active during winter 
and are highly heterogeneous in space and time. These studies also indi-
cate that winter conditions, such as the extent and properties of ice cover, 
stratification and mixing, and availability of light, nutrients, and other 
resources structure biological systems in the Great Lakes.

Past studies of winter biology on the Great Lakes have been uneven in 
their geographic and taxonomic focus. Lakes Erie and Michigan have 
received the most attention while Superior and Huron have been stud-
ied very little. Phytoplankton and, to a lesser extent, zooplankton are the 

only groups that have been studied systematically across the full annual cycle in any of the Great Lakes. 
Information about the biology of viruses, bacteria, protists, benthos, and fish remains scarce. Improved un-
derstanding of winter populations, communities, and productivity across trophic levels is urgently needed 
to close the winter biology knowledge gap on the Great Lakes and improve prediction of what the future 
holds for their ecosystems.

4.1.  Populations and Communities During Winter

Great Lakes populations and communities are strongly influenced by thermal stratification, currents, 
sediment resuspension, light penetration, nutrient concentrations, and the effects of watershed stressors, 
particularly in nearshore areas (e.g., Bramburger & Reavie, 2016; Paver et al., 2020; Pothoven & Vander-
ploeg, 2020; Vanderploeg et al., 2007; Zhao et al., 2009). Despite marked shifts in these forcing agents during 
winter, contrasts between summer and winter communities have not been systematically evaluated. One 
assumption is that winter communities comprise relicts of “dominant” summer populations representing 
dormant or senescent life cycle phases. This assumption appears false; rather, Great Lakes winter biological 
communities likely represent distinct assemblages adapted to winter conditions and characterized by active 
metabolism.

Few studies have examined the full-year seasonality of phytoplankton communities in the Great Lakes. 
Comprehensive surveys in western Lake Erie in the 1930s and 1940s showed two recurring seasonal 
peaks in phytoplankton abundance: a late winter-early spring bloom that typically started under the ice in 
mid-February (Figure 6) and reached peak densities around ice off in late March-early April; and one in late 
summer-early fall (Chandler, 1940, 1942, 1944; Chandler & Weeks, 1945). Spring blooms were composed 
almost entirely of diatoms including Asterionella, Synedra, Stephanodiscus, and Cyclotella spp. In Lake On-
tario (which does not typically freeze over in winter), the same diatom genera attain their peak annual den-
sities during the winter-spring transition, although the late winter diatom bloom is less pronounced than 
in Lake Erie (Munawar & Munawar, 1982; Stoermer et al., 1975). Smaller-scale surveys in Lake Michigan 
showed that mid-winter mixotrophic phytoflagellates, which prey on bacteria and picoplankton, can also be 
an important component of the offshore phytoplankton community (Butts & Carrick, 2017; Carrick, 2005). 
Detailed, large-scale, seasonal phytoplankton studies have not been conducted in all Great Lakes and re-
cent survey data (e.g., Reavie et al., 2014) illustrate that spring phytoplankton communities in Lakes Erie 
and Ontario have changed markedly since the aforementioned decades-old studies, illustrating the need to 
revisit seasonal phytoplankton dynamics in all five Great Lakes.
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Figure 6.  Annual variation in phytoplankton abundance in the Bass 
Islands region of western Lake Erie between 1939 and 1942, based on data 
from Chandler (1940, 1942, 1944), Chandler & Weeks (1945). Approximate 
period of ice cover during study years is shown in gray.
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The role of winter conditions in structuring Great Lakes phytoplankton 
communities is not well-studied, complicating our understanding of 
winter-spring phytoplankton community development and differences 
among lakes and years (Figure 6). This lack of mechanistic understand-
ing undermines the ability to predict the effects of environmental change 
on Great Lakes phytoplankton. Existing evidence suggests that ice cover 
plays a key role in controlling phytoplankton community characteristics. 
Great Lakes ice is often blown clear of snow by the wind, resulting in 
relatively high light transmittance (Bolsenga & Vanderploeg, 1992). Ice 
cover curtails effective mixing and associated turbidity, potentially result-
ing in favorable light conditions for phytoplankton compared to those in 
ice-free waters (Bolsenga & Vanderploeg, 1992; D'souza et al., 2013; Twiss 
et al., 2012; Vanderploeg, Bolsenga, et al., 1992). When ice is absent, deep, 
storm-driven mixing results in uniform distributions of phytoplankton 
throughout the water column and sediment resuspension in shallow ar-
eas, leading to a poor light climate for phytoplankton (Beall et al., 2016; 
Stoermer et al.,  1975; Vanderploeg, Bolsenga, et al.,  1992; Vanderploeg 
et al., 2007). In Lake Erie, ice cover extent has been linked to changes in 
phytoplankton abundance and community structure: high ice cover has 
been correlated with high densities of large filamentous diatoms, where-
as low phytoplankton biomass and smaller taxa characterized low-ice 
years (Beall et al., 2016).

The extensive spread of invasive dreissenid (zebra and quagga) mussels 
starting in the late 1980s has dramatically altered food web dynamics in 

all Great Lakes except Lake Superior (Bunnell et al., 2014), but the impacts of dreissenids on winter ecolog-
ical dynamics have not been broadly examined. Dreissenid mussels are physiologically active throughout 
the year and filter feed even at 1°C (Vanderploeg et al., 2010). The impact of their filtering ability is evident 
in the disappearance of the winter-spring phytoplankton bloom in Lake Michigan, where Dreissena filtering 
rates can exceed phytoplankton growth rates (Rowe et al., 2015; Vanderploeg et al., 2010). Modeling and 
observations have shown that inverse stratification (surface water temperatures < 4°C) can limit quagga 
mussel filtration impacts on phytoplankton, while concurrently enhancing phytoplankton growth by limit-
ing the mixed layer depth and associated light limitation (Rowe et al., 2015, 2017). In Lake Erie, dreissenid 
filtering has led to a post-invasion shift in the winter diatom community, where large, heavily silicified 
chain-forming diatoms (Aulacoseira spp. and Stephanodiscus binderanus) came to dominate the community 
at the expense of smaller taxa ( Beall et al., 2016; Chandler, 1940; Sze & Stewart, 1974; Twiss et al., 2012). 
Additional research to determine the impacts of winter conditions on interactions between dreissenid mus-
sels and phytoplankton is urgently needed to better predict what the future holds for the role of Dreissena 
in Great Lakes ecosystem function.

Another knowledge gap in the Great Lakes concerns sympagic communities–microbes associated with the 
underside of the ice and the water column immediately beneath it. In marine systems, productive microbial 
communities are found in brine channels in the ice and on the lower surface of the ice (Garrison et al., 1983; 
Horner et al., 1992; Kaartokallio, 2004; Post et al., 2013). Until recently, limnologists have paid very little atten-
tion to the sympagic environment. However, evidence from Lake Baikal (and more recently other lakes) sug-
gests that diatom-dominated sympagic communities exist in and under freshwater ice, taking advantage of 
the relatively high light environment and stable substrate this environment affords (Bondarenko et al., 2006; 
Bullerjahn et al., 2020; Frenette et al., 2008; McKay, Prášil, et al., 2015; Melnik et al., 2008; Timoshkin, 2001).

Sympagic communities have been recently documented in Lake Erie, where very large accumulations of 
phytoplankton biomass (greatly exceeding water column concentrations) occurred in association with frazil 
ice (Figure 7; Twiss et al., 2012). These communities were dominated by diatoms along with bacteria, non-
diatom phytoplankton, and heterotrophic protists. D'souza et al. (2013) showed that these accumulations 
occur due to trapping of phytoplankton cells in newly forming frazil ice and that diatoms and associated 
bacteria partition to overlying ice by catalyzing biological ice nucleation. At present, very little is known 
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Figure 7.  Photograph showing brownish accumulations of diatoms 
and sediment entrained in slush (i.e., frazil ice) on the underside of ice 
left in the wake of US Coast Guard icebreaker NEAH BAY on Lake Erie. 
Gulls would follow the ice breaker and periodically dive into the slush to 
feed—likely not on microbes but further up the food chain—showing how 
important these sympagic communities are in this great lake. Photo by 
Lauren Jorgensen, U.S. Coast Guard.
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about the taxonomic composition of these communities, their spatial and seasonal dynamics, and their 
ecological importance.

The zooplankton of the Great Lakes exhibits varying abundances and life history strategies during winter 
conditions. Winter zooplankton community studies have been conducted in Lakes Erie, Ontario, Superior, 
and Michigan (Chandler, 1940; Glooschenko et al., 1972; Selgeby, 1975; Vanderploeg et al., 2012). Overall 
crustacean zooplankton abundance and biomass are at their annual minimum from late fall to late spring, 
during which time native herbivorous cladocerans and the invasive, predatory cladoceran Bythotrephes 
longimanus are almost completely absent. On the other hand, many predatory and omnivorous calanoid 
copepods and the large opossum shrimp (Mysis diluviana) maintain high abundances and the calanoids 
have a major reproductive pulse during the winter in the deep Great Lakes (Pothoven & Vanderploeg, 2017; 
Selgeby,  1975; Twiss et  al.,  2012; Vanderploeg et  al.,  2012). Predacious and omnivorous calanoids have 
been shown to feed actively during winter in the upper water column under ice (Vanderploeg, Bolsen-
ga, et al., 1992) and in open water (Bundy et al., 2005; Warren, 1983), with potentially important conse-
quences to the structure of plankton communities during the rest of the year. The overwintering, univoltine 
calanoids represent taxa that have developed extreme lipid storage and lifecycle strategies that allow new 
offspring to be sufficiently developed by late winter to capitalize on under-ice production and ultimately 
recruit to adults in the summer (Vanderploeg, Gardener, et al., 1992; Vanderploeg et al., 1998).

Unlike crustacean zooplankton, microzooplankton (flagellated and ciliated protists) in the Great Lakes ex-
hibit a winter/spring abundance peak (Carrick, 2005). These organisms are generally phagotrophs that feed 
on bacteria and picoplankton-sized prey. Studies in Lakes Michigan and Erie have shown that microzoo-
plankton communities form a key food web linkage during winter, applying high grazing pressure on small 
phytoplankton cells while representing the main food source for winter-active omnivorous copepods (Bun-
dy et al., 2005; Twiss et al., 2014). While zooplankton has received more attention than other components 
of the Great Lakes food web during winter, several important knowledge gaps remain. These include the 
magnitude of top-down effects of zooplankton on microbial communities, the nature of the relationships 
between phytoplankton, microzooplankton, and crustacean zooplankton, the effect of winter conditions 
in structuring zooplankton community composition and distribution, and the impacts of winter predation 
by fish (e.g., Link et al., 1995) on zooplankton. Beyond grazing pressure, recent studies point to microbial 
parasites (chytrid fungi and oomycetes) as additional contributors to structuring winter planktonic commu-
nities (Edgar et al., 2016).

Great Lakes fish communities are more compositionally stable across seasons than microbial, algal, and inverte-
brate communities because most fish species live for multiple years. Fish are thus subjected to climatic variabil-
ity across a range of temporal scales during their lifetime, from short duration fluctuations in winter conditions 
(i.e., temporary presence of ice, altered water column mixing) to long-term trends (e.g., an ongoing decrease of 
ice extent). The range of environmental variation in winter conditions experienced by fishes results in important 
physiological and behavioral adaptations and trade-offs (Garvey et al., 2004). Great Lakes fishes are generally 
classified as warm, cool, or cold-water species (Elliott & Elliott, 2010; Fry, 1971; Shuter et al., 2012), exhibiting 
two common physiological coping strategies for over-winter survival. For obligate cold-water taxa, foraging is 
beneficial and individuals can sustain positive growth under winter conditions (Caldwell et al., 2020). Alterna-
tively, for cool or warm-water species that are simply tolerant of winter conditions, foraging provides no benefit 
beyond starvation avoidance and winter growth is limited or not possible (Shuter et al., 2012).

Winter conditions can affect Great Lakes fish communities by imposing different pressures on population dy-
namics of cold, cool, and warm-water taxa, including influences on growth, survival, and reproduction. For ex-
ample, increased ice cover in Lake Michigan protects lake whitefish (Coregonus clupeaformis, a cold-water spe-
cies) eggs from wave action and abrasion during late winter (Brown et al., 1993; Freeberg et al., 1990), leading 
to higher recruitment. Similarly, yellow perch (Perca flavescens, a cool-water species) egg quality, larval survival, 
and recruitment in Lake Erie are reduced following warm, low-ice years compared to colder years (Farmer 
et al., 2015). In contrast, survival and recruitment of alewife (Alosa pseudoharengus), a warm-water invasive 
species, have been shown to be negatively affected by winter severity in Lake Ontario (O’Gorman et al., 2004).

While winter conditions have long been recognized as a key driver of fish community dynamics, many ques-
tions remain about the winter ecology of Great Lakes fishes (Marsden et al., 2021) including movement and 
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habitat use (Figure 8). The ecosystem consequences of potential changes in fish community structure caused 
by changes in winter conditions (e.g., top-down effects on prey species, bottom-up effects of zooplankton, 
and competition between different fish taxa) require attention. For example, how abundances of different 
native and invasive taxa will change under projected changes to winter conditions remain poorly understood.

Four broad questions need to be addressed to improve understanding of the winter population and commu-
nity dynamics in the Great Lakes.

Q3.1: How are abundance, community composition, and distribution of viruses, bacteria, archaea, fungi, 
phytoplankton, zooplankton, benthos, and fish affected by winter conditions, especially the extent and du-
ration of winter stratification with and without ice cover?

Q3.2: How common are sympagic communities in the Great Lakes during winter, what determines their 
presence and structure, and what role do they play in the winter ecology of the Great Lakes?

Q3.3: What is the role of winter-time community interactions such as competition, grazing, predation, dis-
ease, mutualism, and parasitism in determining the abundance of different organisms during winter and 
subsequent seasons?

Q3.4: Which fish species (i.e., cold, cool, and warm-water species) are likely to be most resilient to predict-
ed changes in winter climate (e.g., reduced ice cover, monomictic conditions, increased coastal sediment 
resuspension)?
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Figure 8.  Conceptual diagram showing the effect of ice cover on the major physical, biogeochemical, and biological 
processes in the Great Lakes. The extent of ice cover is a major determinant of water temperature, with open water 
potentially cooling more than ice covered regions. In open water, the wind can drive waves and currents, which 
break and transport ice, potentially forming ice keels. Wind also drives the mixing of the water column and sediment 
resuspension. The magnitude of turbulence determines how deeply phytoplankton and zooplankton can be mixed, 
which differs between open water and ice-covered regions. The vertical light profile varies in winter depending upon 
whether there is open water, black ice, or white ice. Even under white ice, sufficient light can penetrate to support 
phytoplankton and sympagic algal communities. Solar radiation can drive convection under ice, which is an important 
source of mixing in absence of wind driven currents. During warmer winters, runoff from rivers, agriculture, and urban 
environments is an important source of nutrients for the food web. While it is not well known where fish overwinter, 
it is thought that representative species like Northern Pike, Lake Trout, and Largemouth Bass use shallower littoral 
regions of the Great Lakes.
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4.2.  Winter Productivity

While freezing air temperatures render winter a time of minimal productivity in terrestrial ecosystems of 
the Great Lakes region (e.g., McCaughey et al., 2006; Studd et al., 2021), the unique physical properties of 
water create under-ice refugia from freezing, allowing primary production and its utilization to continue at 
higher rates than in terrestrial habitats. The magnitude and fate of winter production vary widely among 
lakes depending on winter conditions such as ice and snow cover, under-ice stratification and mixing pat-
terns, and nutrient availability (Katz et al., 2015; Pernica et al., 2017; Straškrábová et al., 2005). Very few 
systematic measurements of winter primary and microbial productivity have been made in the Great Lakes, 
resulting in a critical knowledge gap on the contribution of winter productivity to total annual production 
and prediction of how the Great Lakes will respond to future environmental change.

Although lower than in summer, measured winter primary productivity rates in the Great Lakes are sub-
stantial. Glooschenko et al. (1974) and Depew et al., (2006) presented comprehensive year-round planktonic 
primary production estimates for Lakes Ontario and Erie, respectively (Table 1). Both studies were conduct-
ed during low-ice years and revealed that primary productivity rates were at their annual minimum during 
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Study Study location and period Method
Winter ice 
conditions Winter rates Summer rates

Winter: 
Summer 

ratio

Planktonic primary production

Glooschenko 
et al. (1974)

L. Ontario. 32 locations 
throughout lake

14C light/dark 
incubations

Ice-free 0.27 g C/m2/
day (average 
December- March)

0.69 g C/m2/
day (average 
April- October)

0.39

Biddanda & 
Cotner, (2002)

L. Michigan. 4 winter and 
4 summer locations 
in southern basin, 
nearshore to offshore.

14C light/dark 
incubations

Ice-free 0.36 g C/m2/day 
(regional average, 
March 1999)

0.33 g C/m2/day 
(regional average, 
June 1999)

1.09

Depew et al. (2006) L. Erie. 1–12 locations in 
east basin

14C light/dark 
incubations

Ice-free 0.18 g C/m2/
day (average 
December–March)

0.58 g C/m2/
day (average 
April–October)

0.31

Saxton et al. (2012) L. Erie. 5 winter and 4 
summer locations

Oxygen evolution 
method

Ice-covered 0.18 g C/mg chl./day 
(average February)a

0.33 g C/mg chl./day 
(average June-
July)a

0.55

Planktonic bacterial production

Cotner et al. (2000) L. Michigan, [3H]-leucine Ice-free 2.62 µg C/L/day 1.38 µg C/L/day 1.90

11 locations in the 
southern basin, 
nearshore to offshore

incorporation (March 1998 nearshore) 
0.60 µg C/L/
day (March 1998 
offshore)

(August 1998 
nearshore) 1.27 µg 
C/L/day (August 
1998 offshore)

0.47

Biddanda and 
Cotner (2002)

L. Michigan. 3–4 
locations in the 
southern basin, 
nearshore to offshore

[3H]-leucine 
incorporation

Ice-free 2.10 µg C/L/day 
(average from 
March 1999 March 
2000)

2.75 µg C/L/day 
(average from June 
1999 May 2000)

0.76

Wilhelm 
et al. (2014)

L. Erie. 3–5 locations 
spanning all basins

[3H]-leucine 
incorporation

Ice-covered 0.02 µg C/L/hr (average 
from February 2008 
and 2009)

1.7 µg C/L/day 
(average from July 
2002)

0.01

Xenopoulos et al., 
unpublished 
data

L. Erie, 3 pelagic locations 
(east, central, western 
basins).

[3H]-leucine 
incorporation

Ice-covered (46–
76 cm thick)

0.67 µg C/L/day 
(February 2014)

5.46 µg C/L/day 
(August 2014)

0.12

Note that different units are reported across the studies, but all are based on carbon.
aRates were collected directly from the text or estimated via table values or by digitizing figures and the ratio was calculated from winter to summer. Rates 
reported in units of oxygen were converted to units of C using the assumed photosynthetic quotient of 1.2.

Table 1 
Summary of Great Lakes Winter-Summer Phytoplankton and Bacterioplankton Primary Production Rate Comparison Studies
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winter, at 20%–30% of peak open water season rates. In contrast, a smaller-scale study in southern Lake 
Michigan found slightly higher gross primary productivity rates during ice-free winter sampling than during 
summer (mean 0.36 vs. 0.33 g C m−2 day−1; Biddanda & Cotner, 2002). Lohrenz et al. (2008) measured a large 
range of winter primary productivity rates (0.18–0.48 g C m−2 day−1) along nearshore to offshore transect in 
southeastern Lake Michigan, with rates increasing nearshore where nutrient concentrations were higher.

Very few Great Lakes winter productivity datasets include under-ice measurements. We are aware of only 
four studies from Lake Erie that report any primary production values for under-ice phytoplankton. Sax-
ton et al.  (2012) used lab incubations to compare primary productivity rates of phytoplankton collected 
in summer and under the ice. On average, winter primary productivity rates were ∼55% of summer rates 
(Table 1). Beall et al. (2016), Collier (2016), and D'souza (2012) compared primary productivity in open-wa-
ter and ice-covered conditions, finding a wide range of primary productivity rates among phytoplankton 
communities under and within the ice. However, all these studies report chlorophyll-normalized maximum 
photosynthetic rates, making it difficult to compare results to those from studies reporting depth-integrated 
C fixation values. Overall, the diversity of methodological approaches and the limited spatial or temporal 
extent of most existing studies make robust generalizations about winter primary production difficult.

Winter bacterioplankton biomass and rate processes remain even less well-quantified than for phytoplank-
ton. Wilhelm et al. (2014) estimated that winter bacterial productivity rates in Lake Erie were ∼1% of sum-
mer rates, attributing the large seasonal difference to temperature (Table 1). Additional data collected by 
co-author Xenopoulos’ lab and reported here (Table 1) also showed lower rates of bacterial production in 
Lake Erie in winter (12% of summer rates). In contrast, Biddanda and Cotner (2002) and Cotner et al., (2000) 
found relatively high winter bacterial production rates (∼47%–190% of summer, with higher rates found in 
the nearshore) and biomass similar to summer in a late winter sediment plume in Lake Michigan. The 
dearth of seasonal studies on Great Lakes bacterioplankton makes it difficult to reconcile the divergent 
results from Lakes Erie and Michigan and to make generalizations on rates and controls on Great Lakes 
bacterioplankton abundance and production during winter.

While the above studies show that production is typically lower in winter than in summer, seasonal and spa-
tial variation in primary and bacterial productivity remain poorly quantified across the Great Lakes during 
winter. The influences of drivers such as mixing, ice cover extent and clarity, sediment resuspension and nu-
trient availability on pelagic productivity rates during winter, and the balance between heterotrophy and au-
totrophy are important outstanding questions. Addressing these questions will help contextualize past find-
ings (Biddanda & Cotner, 2002; Depew et al., 2006; Glooschenko et al., 1974; Kerfoot et al., 2008; Wilhelm 
et  al.,  2014) and parameterize predictive models of winter-period productivity under changing environ-
mental conditions. To date, no studies have examined primary production by benthic algae or macrophytes 
during winter, which may respond very differently to changing winter conditions than phytoplankton.

The role of winter production in the Great Lakes food web is not well-known. Several researchers (Bundy 
et al., 2005; Kerfoot et al., 2008; Vanderploeg, Bolsenga, et al., 1992) demonstrated active feeding of micro- 
and meso-zooplankton on winter algae and suggested that this feeding may be important for the overwinter 
survival and spring reproduction of Great Lakes calanoid copepods. Phytoplankton growth and grazing 
rates measured in mid-winter in Lake Erie (Twiss et al., 2014) are similar to those measured in summer 
(Twiss & Campbell, 1998). Wilhelm et al. (2014) reported low bacterial degradation of a winter phytoplank-
ton bloom in Lake Erie and efficient export of phytoplankton C to the benthos, where it may contribute to 
bacterial oxygen consumption and hypoxia during summer when temperature increases. The role of win-
ter productivity in supporting benthic consumers has not been studied in detail. Vanderploeg et al. (2009) 
showed an increase in dreissenid mussel body condition in Lake Erie and Lake Huron's Saginaw Bay some-
time between autumn and early spring, suggesting that winter feeding may be important to sustaining these 
(and potentially other) benthic consumers. Winter feeding has been demonstrated for some Great Lakes 
fish (Bailey, 1972; Link et al., 1995), but its importance to sustaining fish populations is unclear.

Additional studies are also needed to constrain seasonal metabolism (i.e., productivity vs. respiration) in 
the Great Lakes, determine the way winter conditions affect this balance, and predict how climate change 
will affect the role of the Great Lakes in the global C cycle. Existing studies show that Lakes Ontario (Ea-
die & Robertson, 1976), Superior (Urban et al., 2005), Michigan (Lohrenz et al., 2008), and Erie (Depew 
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et  al.,  2006) have a distinct seasonal pattern of ecosystem metabolism, with increased net heterotrophy 
during winter months. However, these studies are insufficient for the construction of mechanistic models 
linking environmental conditions to whole-system metabolism. Thus, in addition to constraining microbial 
and phytoplankton process rates, studies of whole ecosystem metabolism linking allochthonous and au-
tochthonous C to primary and microbial production are needed.

The below set of questions need to be addressed to integrate winter-period primary and microbial produc-
tion into the understanding of whole year productivity, ecosystem metabolism, and food web dynamics of 
the Great Lakes.

Q3.5. What are rates of winter pelagic and benthic primary and microbial heterotrophic productivity in the 
Great Lakes and how do they vary temporally and spatially?

Q3.6. How are winter primary and microbial productivity influenced by ice cover, light, temperature, nutri-
ents, organic carbon, and currents, turbulence, and sediment resuspension?

Q3.7. What is the role of winter production in supporting the food webs of the Great Lakes?

5.  Lessons and Conclusions
The paucity of winter limnology studies in general—and on large lakes in particular—combined with rapid 
change in a winter climate, make winter research an urgent priority for Great Lakes science. As reviewed 
above, current knowledge gaps for the Great Lakes range from the physics of water column mixing and 
ice formation to community ecology and ecophysiology. These knowledge gaps are not unique to the Lau-
rentian Great Lakes and extend across the spectrum of temperate and boreal lake sizes and winter condi-
tions (Bouffard & Wüest, 2019; Grosbois et al., 2017; Hampton et al., 2017; Kirillin et al., 2012; Kouraev 
et al., 2016; Perga et al., 2020; Powers & Hampton, 2016). Addressing these gaps will require extensive state 
and process studies and collaboration of researchers working across the range of aquatic science subdisci-
plines and study systems.

While much remains to be learned, our review of the Great Lakes literature has identified several important 
themes and lessons about the winter limnology of large lakes. One important conclusion pertains to the role 
of ice cover as a “master variable” that controls physical, biogeochemical, and biological processes during 
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Box 2. Existing and future approaches to the study of the Great Lakes in winter

Improved understanding of the Great Lakes in winter can be achieved by making better use of existing infrastructure and invest-
ment in new, specialized research platforms (Figure 9). Some winter-time work can be performed using existing research vessels 
during low ice years, as has been done on Lake Ontario during the International Field Year for the Great Lakes (1972–1973; 
e.g., Glooschenko et al., 1974) or as part of the Episodic Events - Great Lakes Experiment (EEGLE; e.g., Green & Eadie, 2004) 
cruises on Lake Michigan (1998–2000). Some nearshore areas of the Great Lakes (e.g., Apostle Islands in Lake Superior, Grand 
Traverse Bay and Green Bay in Lake Michigan, Saginaw Bay in Lake Huron, and Bay of Quinte in Lake Ontario) have regular 
and stable ice cover, permitting winter access to researchers on foot or snowmobile. Collaboration with U.S. and Canadian Coast 
Guard icebreakers has allowed unprecedented insights into winter limnology on the Great Lakes (Depew et al., 2006; McKay 
et al., 2011; Oyserman et al., 2012; Twiss et al., 2012). Such collaborations should continue to be nurtured and leveraged by 
researchers as one of the few available mechanisms for directly accessing the pelagic areas of the Great Lakes during periods 
of ice cover. Deployment of dedicated ice-strengthened or even ice-breaking research vessels would be an important advance 
in observational capabilities in the medium to the long-term timeframe. Progress in remote sensing and surface and subsurface 
autonomous sensor platforms has been rapid and now allows not only high-frequency recording of physical and bio-optical 
data but also collection and preservation of water samples for chemical and biological analyses. Increased use of such platforms 
holds great promise in studying the physics and biology of the Great Lakes in winter. Most importantly, a collaborative network 
of researchers interested in conducting winter research and securing investments in such research is crucial for closing the 
winter gap of Great Lakes limnology.
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winter (Figure 8). Among its effects, ice cover can impact vertical and horizontal water column mixing and 
thermal regimes, sediment resuspension, and nutrient availability, directly and indirectly control light avail-
ability to primary producers, provide physical habitat for microbes, and affect the distribution of primary 
producers and their consumers. Similar conclusions have been reached for smaller lakes, making continued 
studies on the ecosystem-structuring role of ice cover a high priority for research.

Another important conclusion from our review is that winter conditions can impact physical, biogeochem-
ical, and biological processes in subsequent seasons. For example, water temperatures remain colder for 
longer and stratification sets in later in the deep and large Great Lakes following cold winters than after 
warm winters (e.g., Figure 3; Anderson et al., 2021). Winter conditions can also affect spring phytoplank-
ton community structure, the export of carbon to deep waters, and, consequently, summer hypoxia (Beall 
et al., 2016; Wilhelm et al., 2014). Winter severity has also been shown to impact the recruitment and surviv-
al of fish in the Great Lakes (Farmer et al., 2015; Freeberg et al., 1990; O’Gorman et al., 2004), which likely 
has cross-seasonal repercussions not just for the populations of these fish but also the parts of the food web 
these species interact with.

Finally, our literature review showed that winter conditions in large lakes can be highly variable spatially 
and temporally. Ice cover on the Great Lakes is very dynamic, with ice forming, moving many kilometers, 
and getting destroyed over the time span of days (Hawley et al., 2018; Titze & Austin, 2016). Resuspension 
of nearshore sediments by winter storms in ice-free regions can lead to large spatial heterogeneity in water 
clarity, nutrient concentrations, and biological activity (Eadie et al., 1996; Kerfoot et al., 2008; Vanderploeg 
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Figure 9.  Several existing approaches to winter sampling in the Great Lakes. (a) The University of Minnesota's 
R/V Blue Heron traveling through early spring ice on Lake Superior (photo by University of Minnesota Duluth); (b) 
Researchers sampling benthos in the Apostle Island area of Lake Superior (photo by Ted Ozersky); (c) A WetLabs 
AMP100 autonomous profiler being deployed in Lake Superior. The instrument travels up and down its mooring tether, 
recording water column parameters including temperature, oxygen concentrations, and chlorophyll fluorescence 
(photo by Jay Austin); (d) The Canadian Coast Guard icebreaker Griffon, which has supported winter limnology 
research on Lake Erie (photo by Paul Miller from Canada Steamship Lines).
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et al., 2007). Winter productivity may also be highly variable on interannual time scales. It is well-known 
that in Russia's Lake Baikal under-ice diatom blooms vary in intensity by more than an order of magnitude 
from year to year (Katz et al., 2015). Results from Lake Erie (Figure 6; Beall et al., 2016) suggest potentially 
similar variability. Winter research programs on large lakes must consider this variability and use sampling 
designs that span relevant spatial and temporal gradients.

How can progress in understanding the winter limnology of the Great Lakes to be made given the formida-
ble challenges of winter research on these large and dynamic systems? We believe that an important step 
forward is wider recognition of the value of such work. Such recognition should lead to increased use of 
existing infrastructure for the study of winter limnology and to invest in new, specialized research platforms 
(Box 2). Equally important will be increased collaboration and exchange of ideas among researchers stud-
ying the winter physics, chemistry, and biology of diverse freshwater, marine, and terrestrial ecosystems.
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